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Abstract. An approach is proposed to the Hopfield model where the mean-field treatment is
made for a given set of stored patterns (sample) and then the statistical average over samples
is taken. This corresponds to the approach made by Thouless, Anderson and Palmer (TAP) to
the infinite-range model of spin glasses. Taking into account the fact that in the Hopfield model
there exist correlations between different elements of the interaction matrix, we obtain its TAP
free energy explicitly, which consists of a series of terms exhibiting the cluster effect. The
nature of the spin-glass transition in the model is also examined and compared with those given
by the replica method as well as the cavity method.

1. Introduction

Neural networks are systems in which a great number of neurons are connected with each
other by synapses. According to a standard model, fruitful in applications although beyond
doubt in biological significance, the neurons basically take one of two states, i.e. the firing
and non-firing states. A neuron is firing if stimuli coming from (thousands of) neighbouring
neurons exceed a threshold. The neuron thus firing in turn affects neighbouring neurons.
These features are reminiscent of an Ising spin system with long-ranged interactions.

Hopfield [1] pointed out that the neural networks can be described by a mathematically
equivalent model to that of spin glasses if couplings through synapses are symmetric and
random. This suggests that the various methods developed for spin glasses are applicable
to the neural networks. Indeed, numbers of studies have been made on this model since
then [2–5]. Among others, the work made by Amit, Gutfreund and Sompolinsky (AGS) [5]
is worth noting. Applying the replica method, which is a mathematical trick to calculate
the free energy, they investigated the Hopfield model to find that it exhibits a feature of
the associative memory in a certain region in theT − α plane, whereT is temperature
andα = p/N is the ratio of the number of stored patternsp to that of neuronsN . The
region is called the retrieval ferromagnetic (FM) phase. It was also shown by AGS that
the model has another ordered phase, called the spin-glass (SG) phase, besides a disordered
paramagnetic (PM) phase at highest temperatures.
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Sherrington and Kirkpatrick [6] proposed a model for SGs (the SK model) in which all
Ising spins are coupled with each other through interactions which are given by independent
Gaussian random numbers. The model was introduced to construct the mean-field theory
of SG. Making use of the replica method, they obtained various properties of SG. Although
the original SK solution involves a difficulty to yield negative entropy at low temperatures,
the model is now resolved by the replica-symmetry-breaking solution due to Parisi [7].

The replica method is successful, but it is rather abstract since, by this method, the
average over samples is carried out before examining thermodynamic properties of an
individual sample. In order to get more direct physical insights of the SK model, Thouless,
Anderson and Palmer (TAP) [8] developed the mean-field theory in the phase space, by
which one first treats an individual sample and then takes the average over samples. They
proposed the free-energy form which contains the effect of the 2-spin cluster besides the
terms given by the conventional mean-field theory. The TAP free energy, properly derived
afterwards [9, 10], works well to further clarify various features of SG such as the marginal
stability of the SG phase [11], the many-valley structure in the free-energy landscape [12],
the number of local free-energy minima [13] and so on. It is now known that the TAP
free-energy approach and the replica method are consistent with each other and provide
complementary understandings of SG [14, 15].

This work is motivated to develop such a TAP-like approach to the Hopfield model which
is expected to play roles complementary to the AGS replica theory. Such an approach has
been already described by Mézard, Parisi and Virasoro (MPV) in [14]. Based on the cavity
method, which they have successfully developed to derive the TAP equations of states for
the SK model, they have proposed the corresponding equations of states for the Hopfield
model. We consider, however, that a part of their derivation has remained to be justified.

The main purpose of this paper is to derive the TAP free-energy expression for the
Hopfield model directly by following the method due to Plefka [10], who derived the TAP
free energy of the SK model. A crucial difference between the two models is that there
exist correlations between different elements of the interaction matrix in the Hopfield model
[14, 16], while they are not found in the SK model. Consequently the TAP free energy of
the former consists of an infinite series of terms exhibiting such correlation (cluster) effects.
Based on the TAP free energy derived, we analyse mostly the nature of the SG phase of
the model and compare the results with those obtained by the replica method as well as by
the cavity method. The derived TAP free energy is valid also in the retrieval FM phase,
but the solution in this phase is left for a future study.

In the next section we present the derivation of the TAP free energy of the Hopfield
model. The PM–SG transition temperatureTSG is calculated in section 3. Section 4 is
devoted to some related discussions including comparisons of our results with those obtained
by AGS and MPV.

2. Derivation of the TAP free energy

Our starting Hamiltonian is

H = −
∑
〈i,j〉

JijSiSj (1)

where i(= 1, 2, . . . , N) denote spin (neuron) sites, andSi stand for spins (neurons) and
take the values±1; the values+1 and−1 correspond to the neuron which is firing and is
not firing, respectively. The summation is taken over all spin (neuron) pairs.
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The interaction (synaptic efficiencies)Jij are given by

Jij =


1

N

p∑
µ=1

ξ
µ

i ξ
µ

j for i 6= j

0 for i = j
(2)

whereξµi take±1 and{ξµi } represent theµth stored pattern. Here we consider thatξ
µ

i are
quenched, independent and random variables. This means thatJij are also random variables.

One sees thatJij obey the Gaussian distribution withJij = 0 andJ 2
ij = p/N2, where the

overline indicates the average over samples (different realizations of{Jij } or {ξµi }s). It
should be noticed here that{Jij } are not independent of each other, but have correlations
between differentJijs [14, 16]; for example, we see

JijJjkJki = p

N3
= α

N2
. (3)

These non-zero correlations bring about new terms in the free energy (see below).
In order to obtain the free energy, we follow Plefka [10]. Introducing external fields

hex
i , we consider

H̃ = aH −
∑
i

hex
i Si . (4)

Then, we make the Legendre transformation to get the free energy as a function ofmi ,

F = −T ln Tr e−βH̃ +
∑
i

hex
i mi. (5)

HereT is the temperature (β = 1/T , with kB = 1) andmi = 〈Si〉a, where〈· · ·〉a denotes
the expectation value with respect tõH . We expand (5) with respect toa, i.e.

F(a) =
∑
n=0

1

n!

∂nF

∂an

∣∣∣∣
a=0

an (6)

and then we puta = 1. Plefka showed

∂F

∂a
= 〈H 〉a (7)

∂2F

∂a2
= −β〈H(H − 〈H 〉a −31)〉a (8)

and obtained

∂F

∂a

∣∣∣∣
a=0

= −
∑
〈i,j〉

Jijmimj (9)

∂2F

∂a2

∣∣∣∣
a=0

= −β
∑
〈i,j〉

J 2
ij (1−m2

i )(1−m2
j ) (10)

where we have introduced

3n =
∑
i

∂nhex
i

∂an
(Si −mi)

=
∑
i

∂

∂mi

(
∂nF

∂an

)
(Si −mi). (11)
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Now we extend the calculation up to the fourth order. This calculation is fairly lengthy;
we have made use of the algebraic programming system REDUCE-2. The results thus
obtained are as follows

∂3F

∂a3
= β〈H 〉a ∂〈H 〉a

∂a
+ β〈H32〉a + β2〈H(H − 〈H 〉a −31)

2〉a (12)

∂4F

∂a4
= 3β

(
∂〈H 〉a
∂a

)2

+ β〈H 〉a ∂
2〈H 〉a
∂a2

+ β〈H33〉a − 3β2〈H32(H − 〈H 〉a −31)〉a
−β3〈H(H − 〈H 〉a −31)

3〉a (13)

and

∂3F

∂a3

∣∣∣∣
a=0

= −4β2
∑
〈i,j〉

J 3
ijmimj (1−m2

i )(1−m2
j )

−6β2
∑
〈i,j,k〉

JijJjkJki(1−m2
i )(1−m2

j )(1−m2
k) (14)

∂4F

∂a4

∣∣∣∣
a=0

= −2β3
∑
〈i,j〉

J 4
ij (15m2

i m
2
j − 3m2

i − 3m2
j − 1)− 48β3

∑
〈i,j,k〉

JijJjkJki(1−m2
i )

×(1−m2
j )(1−m2

k)(Jijmimj + Jjkmjmk + Jkimkmi)
−24β3

∑
〈i,j,k,`〉

JijJjkJk`J`i(1−m2
i )(1−m2

j )(1−m2
k)(1−m2

`). (15)

In the above,〈i, j, k〉 and 〈i, j, k, `〉 denote that the summation should be taken over
inequivalent3- and 4-spin clusters, respectively.

The free energy should be of the order ofN , and therefore we have only to pick up terms
proportional toN in (9), (10), (14) and (15). For the FM Weiss model withJij = 1/N , we
can see that only (9) gives the contribution proportional toN , as it should. In the SK model,
the interactions{Jij } obey the simple Gaussian distribution withJij = 0 andJ 2

ij = O(1/N),
and there is no correlation between differentJijs. Therefore, as TAP pointed out, equations
(9) and (10) give the contribution of the order ofN . In the Hopfield model of interest,
equations (9) and (10) are of the order ofN as in the SK model. As mentioned in section 1,
however, there exist correlations between differentJijs. This provides new terms to the free
energy. To show this, we take the last term of (14), as an example. Its order of magnitude
is estimated as∑
〈i,j,k〉

JijJjkJki(1−m2
i )(1−m2

j )(1−m2
k) ∼

N(N − 1)(N − 2)

6
JijJjkJki ∼ αN

6
. (16)

Similarly one can see that the last term of (15) yields the contribution of O(N). As for the
other terms in (14) and (15), one can see that they can be neglected in the limitN →∞.
These analyses imply that∂nF/∂an|a=0 for n > 5 also provide the terms of O(N), which
are written in the form,

−n!βn−1
∑

〈i1,i2,...,in〉
Ji1i2Ji2i3 · · · Jini1(1−m2

i1
)(1−m2

i2
) · · · (1−m2

in
). (17)

Their explicit derivation as well as their evaluation are given in appendix A.
As a result, we have the following free energy,

F = F0+ Fcluster (18)
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with

F0 = −
∑
〈i,j〉

Jijmimj + T
∑
i

(
1+mi

2
ln

1+mi
2
+ 1−mi

2
ln

1−mi
2

)
(19)

Fcluster= −1

2
β
∑
〈i,j〉

J 2
ij (1−m2

i )(1−m2
j )

−
∞∑
n=3

βn−1
∑

〈i1,i2,···,in〉
Ji1i2Ji2i3 · · · Jini1(1−m2

i1
)(1−m2

i2
) · · · (1−m2

in
) (20)

where the second term in (19) is the entropy, which comes fromF(0) in (6). The TAP
equations of states described in terms of{mi} are determined by∂F/∂mi = 0, i.e.

T tanh−1mi =
∑
j

Jijmj − β
∑
j

J 2
ij (1−m2

j )mi − 2
∞∑
n=3

βn−1
∑

〈i|j1,j2,...,jn−1〉

×Jij1Jj1j2 · · · Jjn−1i (1−m2
j1
)(1−m2

j2
) · · · (1−m2

jn−1
)mi (21)

for i = 1, 2, . . . , N , where〈i|j1, j2, . . . , jn−1〉 means that the summation should be taken
over inequivalentn-spin clusters with fixedi. With the substitution ofm2

k appearing
explicitly in (21) by the SG order parameterq = N−1∑

i m
2
i , equation (21) is rewritten as

(see appendix A)

T tanh−1mi =
∑
j

Jijmj − αβ(1− q)
1− β(1− q)mi. (22)

3. SG transition temperature

Let us calculate the transition temperature,TSG, which separates the normal (disordered)
and SG phases. To do so, we expand (22) up to the first order ofmi and obtain

Tmi =
∑
j

Jijmj − α

T − 1
mi. (23)

This implies thatTSG is given by the equation,

TSG+ α

TSG− 1
− Jmax= 0 (24)

whereJmax is the maximum eigenvalue of the interaction matrixĴ . It should be mentioned
here that the condition

Jmax> 1+ 2
√
α (25)

should be satisfied to have realTSG.
Our task is then to calculateJmax. In appendix B, it is shown that the distribution

function of eigenvalues of̂J is given as follows

ρ(λ) =
{
ρ0(λ)+ (1− α)δ(λ+ α) for α 6 1

ρ0(λ) for α > 1
(26)

with

ρ0(λ) = 1

2π

√
(λ− 1+ 2

√
α)(1+ 2

√
α − λ)

λ+ α (27)
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Figure 1. The distribution functionρ0(λ) for α = 0.1, 0.5, 1, 1.5 and 2.

whereλ stands for eigenvalues of̂J . In figure 1 the behaviour ofρ0(λ), a continuous part of
ρ(λ), is shown for someα. One notices at once thatρ(λ) exhibits a quite different behaviour
from that of the independent Gaussian random matrix, for which it obeys the semicircular
law [11]. This is again a consequence of the non-zero correlations between the different
matrix elements. Forα < 1, ρ(λ) consists of a delta peak atλ = −α (whose amplitude is
1− α) and the continuous distributionρ0(λ) aroundλ = 1, i.e. 1− 2

√
α 6 λ 6 1+ 2

√
α

(whose integrated amplitude isα). Note thatρ(λ) is normalized as
∫
ρ(λ) dλ = 1. At

α = 1 the delta peak merges toρ0(λ), and forα > 1 ρ(λ) exhibits a single and broad peak.
As for the shape ofρ0(λ), we see from (27) that it becomes semicircular and semi-elliptic
for small and largeα, respectively.

In any α the largest eigenvalue is given by the upper edge ofρ0(λ); Jmax= 1+ 2
√
α.

Then we rewrite (24) to obtain

(TSG− 1−√α)2
TSG− 1

= 0. (28)

This leads toTSG= 1+√α. It is noted thatJmax thus obtained is just on the boundary of
the condition (25), orTSG is given as a double root of (24). These circumstances are the
same as those of the SG transition temperature extracted by the TAP equation in the SK
model.

4. Discussion

The SG transition temperatureTSG obtained by (28) coincides with the AGS result derived
by the replica method. A further interesting comparison with the AGS result is on the
expression of the entropy. To show this, let us rewriteFcluster of (20) in terms of the SG
order parameterq as we have done to derive (22). We obtain

Fcluster= 1
2αN{1− q + T ln[1− β(1− q)]}. (29)

The entropy coming fromFcluster is then given by

Scluster= −∂Fcluster

∂T
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= −1

2
αN

{
ln[1− β(1− q)] + β(1− q)

1− β(1− q)
}
. (30)

This is exactly the same expression as that of the entropy in the limitT → 0 calculated by
AGS (S0 = −∂F0/∂T = 0 in this limit). It becomes negative when it is evaluated in terms
of the replica-symmetric solutions [5]. An expected proper solution is, as TAP argues for
the SK model [8], that(1− q) should vanish faster thanT asT → 0 because we should
haveScluster= 0 at T = 0.

In relation with the present result thatTSG is determined as a double root of (24), let us
consider the susceptibility matrixχij = ∂mi/∂hj . It is known thatχ̂ is given byχ̂ = βÂ−1,
whereÂ is the Hessian matrix defined byAij = ∂2(βF )/∂mi∂mj . Then we see thatχmax

diverges atTSG asχmax ' (T − TSG)
−2, whereχmax is the susceptibility of the eigenmode

with the largest eigenvalueJmax. The SG susceptibility defined byχSG = (1/N)Tr χ̂2 is
calculated as

χSG=
∫

dλ
ρ(λ)

(T + α/(T − 1)− λ)2 (31)

in the PM phase. Sinceρ(λ) ∼ (1 + 2
√
α − λ)1/2 near its upper edge, we obtain

χSG∼ (T−TSG)
−1. The replica method can provide the same result. These results described

here indicate that nature of the PM–SG transition in the Hopfield model, including that the
replica-symmetry-breaking takes place in the SG phase [5], is almost identical to that in the
SK model.

The TAP equations of state for the Hopfield model were already discussed by MPV
[14]. They made use of the cavity method twice. In the first step, one spin is added to the
N -spin system, and the relations between quantities such as the free energy and the density
of states of theN - and(N + 1)-spin systems are examined to determine the distribution of
field to the added spin. Then the following TAP equations are derived

mi = tanhβ

[∑
j

Jijmj − β(r2− r1)mi
]

(32)

wherer2 − r1 = N−1∑p

µ=1(〈η2
µ〉 − 〈ηµ〉2) with ηµ = N−1/2∑N

i=1 ξ
µ

i Si . For the SK model
this step alone gives rise to the TAP equations of interest [14]. For the Hopfield model, on
the other hand, MPV introduced another ‘cavity method’, in which the relevant relations
are those of quantities in the systems wherep and(p+ 1) patterns are stored. This yields,
for the replica-symmetric solution,

r2− r1 = α

β[1− β(1− q)] . (33)

However, equation (32) with (33) substituted does not coincide with our result, equation
(22). Since the factorβ(1− q) in the numerator of the second term of (22) is missing,
the MPV equations do not reproduce the properTSG. We suppose that the origin of the
discrepancy would lie in the second step of the cavity method in the MPV argument.

Finally we make a comment on the work by Geszti [2]. Starting from the equations
mi = tanh(β

∑
Jijmj ), he derived a set of the self-consistent equations for the retrieval FM

order parameterm, the random overlap parameterr, andq, which coincides with those due
to AGS derived by the replica theory. In his heuristic argument, however, the terms in (21)
coming fromFcluster of (20) are ignored. His argument is similar to the one by which the
self-consistent equation forq of the SK model is derived, and which is criticized in [15].
A proper solution of (21) in the retrieval FM phase is our next concern.

To conclude we have developed a TAP-like mean-field theory on the Hopfield model,
by which we first analyse the thermodynamics of an individual sample with fixed{Jij },
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or {ξµi }s and then take the average over samples. In contrast to the SK model for SG
where only the 2-spin cluster effect is vital, it has been shown that a series of clusters,
composing a large number of spins, play an important role in the Hopfield model. This
gives rise to the TAP free energy which contains an infinite number of terms. Based on
it we have investigated the PM–SG transition in the Hopfield model to find that its nature
is almost identical to that in the SK model. We consider that the present TAP free-energy
approach is useful in studying neural networks of a mean-field type since it will provide us
complementary information to the replica method.

Appendix A. Derivation of equation (17) and its evaluation

Here we discuss∂nF/∂an, from which we have terms of the order ofN . We notice that
the last terms of (14) and (15) come from the last terms of (12) and (13), respectively.
Therefore we concentrate, in∂nF/∂an, on the term

(−β)n−1〈H(H − 〈H 〉a −31)
n−1〉a. (A1)

It is easily seen that∂nF/∂an contains the above term if one notes that

∂〈R〉a
∂a
=
〈
∂R

∂a

〉
a

− β〈R(H − 〈H 〉a −31)〉a. (A2)

On the other hand, we have

H − 〈H 〉a −31 = −
∑
〈i,j〉

Jij (Si −mi)(Sj −mj) (A3)

and therefore (A1) can be written by

−βn−1

〈∑
〈i,j〉

JijSiSj

[∑
〈i,j〉

Jij (Si −mi)(Sj −mj)
]n−1〉

a

. (A4)

This provides equation (17) in the text, together with other irrelevant terms.
The sum in equation (17) is overinequivalentn-cites. The number of such terms is

given byN(N − 1) · · · (N − n + 1)/2n, where the factor 2 has been introduced, because
we have

Ji1i2Ji2i3 . . . Jini1 = Ji1in . . . Ji3i2Ji2i1. (A5)

In taking the average over{ξµi } of each of such terms we can replacem2
ij

by q ≡ N−1∑
i m

2
i

as in the TAP analysis of the SK model [17]. Among the averages of the products{Jij } of
(2) only those with a commonµ remain. Thus we get∑
〈i1,i2,...,in〉

Ji1i2Ji2i3 . . . Jini1(1−m2
i1
)(1−m2

i2
) · · · (1−m2

in
)

' N(N − 1) · · · (N − n+ 1)

2n

p

Nn
(1− q)n ' αN

2n
(1− q)n. (A6)

Equation (16) is the case withn = 3 with q = 0. The sum over〈i|j1, j2, . . . , jn−1〉 in (21)
is evaluated similarly.
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Appendix B. Eigenvalue distribution of Ĵ

Following Bray and Moore [11], we write down the distribution function of eigenvalues of
Ĵ as

ρ(λ) = 1

N

∑
i

δ(λ− λi)

= 1

π
Im

[
1

N

∑
i

Gii(λ− iε)

]
(B1)

whereε is a positive infinitesimal andGii are the diagonal elements of the matrix Green’s
function

Ĝ(λ) = (λ · 1̂− Ĵ )−1 (B2)

with 1̂ being the unit matrix. Then we make use of the so-called locator expansion to obtain

Gii = 1

λ
+ 1

λ

∑
j

(
Jij

1

λ
Jji

)
1

λ
+ 1

λ

∑
j,k

(
Jij

1

λ
Jjk

1

λ
Jki

)
1

λ
+ · · ·

= 1

λ
+1+ λ12+ λ213+ · · ·

= 1

λ(1− λ1) . (B3)

Here1 consits of an infinite series of terms due to the existence of correlations between
different matrix elements of̂J (see section 2). Indeed, it is given by

1 = 1

λ

∑
j

(
JijGJji

) 1

λ
+ 1

λ

∑
(i|j,k)

(
JijGJjkGJki

) 1

λ
+ 1

λ

∑
(i|j,k,`)

(
JijGJjkGJk`GJ`i

) 1

λ
+ · · ·

= 1

λ2

∞∑
n=2

G
n−1 ∑

(i1|i2,i3,...,in)
Ji1i2Ji2i3 · · · Jini1 (B4)

where we have introducedG by

G = 1

N

∑
i

Gii (B5)

to take into account the renormalization. In the above,(i1|i2, i3, . . . , in) means that the
summation should be taken overn-body cluster for fixedi1; we see∑
(i1|i2,i3,...,in)

Ji1i2Ji2i3 · · · Jini1 ' (N − 1)(N − 2) · · · (N − n+ 1)Ji1i2Ji2i3 . . . Jini1 ' α. (B6)

Then we have

1 = α

λ2

G

1−G. (B7)

From (B3), (B5) and (B7) we obtain

G = 1

λ[1− αG/λ(1−G)] (B8)

which is solved as

G = 1

2(λ+ α)
[
λ+ 1±

√
(λ+ 1)2− 4(λ+ α)

]
. (B9)
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The above solution yields the imaginary part ofG as follows

ImG =
√

4(λ+ α)− (λ+ 1)2

2(λ+ α) + πCδ(λ+ α) (B10)

where

C =
{

1− α for α 6 1

0 for α > 1.
(B11)

This result together with (B1) and (B5) gives us equation (26) in the text.
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